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One method of obtaining near mInimax polynomial approximation to
fE C ln + I) [-I, 1) is to choose p E .9'n such that f - p equioscillates on the point set
consisting of the extrema of T n + I' It is shown that Ilf- pll may be expressed in
terms of fln+ I) in the same manner as En(f), the error of minimax approximation.
The Lebesgue constants are also investigated.

1. INTRODUCTION

Suppose f E c(n + II [ - I, I]. Then it is known that for minimax polynomial
approximation on [-1, 1]

(1.1 )

where'; E (-1, 1) and II . II denotes the Chebyshev norm on [-1, 1].
It is also well known that near minimax approximation is given by the

interpolating polynomial q E ~ constructed on the zeros of T n + I' the
Chebyshev polynomial of degree n + 1. We then have

Zn(f):= Ilf-qll = 2n(n~ I)! If(n+II«)I,
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(1.2)
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where 'E (-1, 1). Details of both of these results may be found, for
example, in Phillips and Taylor 13). It is also possible to find the Lebesgue
constant An(T) for such interpolation and deduce that

Zn~(1 +An(T)En~ (2+ ~ In(n+ 1»)En.

See Rivlin (4).
Another method of obtaining near minimax approximation is to choose

the unique pEe?,. such that the error 1- p equioscillates on the point set
consisting of the n + 2 extrema of Tn + l' Such an approximation is usually
suggested as a means of starting the Remez exchange algorithm. We will
investigate the error 1-p and show that a result similar to (1.1) and (1.2)
holds.

2. EQUIOSCILLATION ON EXTREMA OF Tn + 1

Let I1j = cos(jn/(n + 1», j = 0,..., n + 1, denote the extrema of Tn + I on
[-1,1]. We note that

where Un E c?" is the Chebyshev polynomial of the second kind.
Suppose qn + 1 E c?" + 1 is the interpolatory polynomial for I constructed on

H= {11o,'''' I1n+d, when

Th ill . f n + 1 • ( ) . II ) d" . "e coe IClent 0 x In qn+ 1 X IS 110"'" I1n+1 an we economIse qn+ I

to obtain

where p E c?". It is clear that 1-p equioscillates on H as f(l1j)­
qn+ I (l1j) = 0, j = 0,..., n + 1.

We also have

(x 2
- 1) Un(x)

f(x) - p(x) = 2n fIx, 110"'" lln + I)

Tn+l(x) ! )+ 2n f 110'"'' ll n + 1
(2.1 )
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1 If(n+I)(A.)I~ mn+1 (22)
2n(n + I)! 7' 2n (n + I)! ' .

where A. E (-1, 1) and

mn+1 = min If(n+l)(x)l.
XE[-I.I]

THEOREM. If fE c(n+ I) [-1, I] and p E ,9" is such that j - p
equioscillates on H then

where fJ E (-1, 1).

Proof We need to prove that

(2.3)

where M n + 1 = Ilpn+ I) II. The result then follows from (2.2) and the
continuity of j(n + I).

It is not possible to obtain (2.3) by simply bounding the two terms in (2.1)
as their signs may differ. We let x = cos e, eE [0, 1l'], e(x) = 2n(f(x) - p(x»
and write (2.1) as

e(x) = -sin e. sin(n + 1) e.f[x, '70"'" '7n+ II

+cos(n+ l)e-j['7o,... ,l1n+l]' (2.4)

We consider four separate cases:

(i) sin(n + 1) eand cos(n +Deof opposite signs.

We use

f[ ]
_f[X,'7o,...,'7n]-f[110,...,'7n+,]

X,'7o,· ..,'7n+l - e 1cos +
(2.5)
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to write (2.4) as
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sin e. sin(n + 1) e
e(x) = - e ![x, 110'"'' I1n J

cos + 1

(
sin e· sin(n + 1) e)

+ cos(n+ l)e+ cose+ 1 ![l1o,···,l1n+l]

= -tan ~B. sin(n + 1) B-fIx, flo,'''' flnl

cos(n +t) B
+ Ie f[l1o,···,l1n+IJ·

cos 2

The factors -tan ~e· sin(n + 1) e and cos(n + De/cos te are of the same
sign and hence

I )1 M n + I M n + I
e(x <Icos(n+ l)el ( )' < ( 1)"n+l. n+.

(ii) sin(n + 1) e and sin(n + t) e of opposite signs.

We use

to deduce that

e(x) = cot te· sin(n + 1) e· f[x, fll , ... , I1 n + 1J

sin(n + D e
- . IB !ll1o,···,'ln+,Jsm 2

when again (2.6) follows.

(iii) cos(n + 1) eand cos(n +~) eof opposite signs.

We first note that

1
jf[x, 110"'" I1n+ 1]1 = Tlflx, 111'"'' fln+I] -fix, 110'"'' I1nJI

&: Mn + 1

"" (n+ I)!

as 110 = 1 and I1 n + 1=-1.

(2.6)

(2.7)

(2.8)
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We then use (2.5) in (2.4) to deduce that

e(x) = -(cos nO +cos(n + 1) 0) •f[x, 170"'" 17 n + II

+ cos(n + 1) 0 ·f[x, 170'"'' 17nJ

= -2 cos(n +~) O· cos ~O ·flx, 170"'" 17n + 11

+ cos(n + 1) 0 'flx, 170"'" 17n1.
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The signs of the factors -2 cos(n +1) B· cos 1B and cos(n + I) B are the
same and hence, using also (2.8),

I I I OJ
Mn+l Mn+1

e(x) ~ cos n . ( 1)' ~ ( )'n+. n+l.

(iv) cos(n + 1) 0 and sin(n +nB of same sign.

We use (2.7) in (2.4) to deduce that

e(x) = (cos(n + 1) 0 - cos nO) . f[x, 170'"'' 17 n + 11

+ cos(n + 1) o· fIx, 171"'" 17n + 11

= -2 sin(n + 1) . sin 1B· flx, 170"'" 17 n + 11

+cos(n+ I)B-jlx, '11''''' '1n+l]'

(2.9)

This time the relevant factors have opposite signs and (2.9) follows.
Result (2.6) follows immediately from (2.4) for 0 =°and B= n. For

() E (0, n), it can be seen from Table I that (i }-(iv) cover all possibilities as
10 E (0, ~n). Thus the proof of the theorem is complete.

TABLE I

Quadrant which contains

640/36/3-6

(n + i) e

I
1
2
2
3
3
4
4

(n+ ()it

1
2
2
3
3
4
4
1

Relevant case

(iv)
(iii)
(i)
(ii)
(iv)
(iii)
(i)
(ii)
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3. LEBESGUE CONSTANT

Suppose p E ,~ is as defined in Section 2 and thus!- p equioscillates on
H. We may write p in terms of Chebyshev polynomials as follows.

where

n

p(X) = 2:' ckTk(x).
k=O

(3.1 )

(3.2)

See Fraser [1]. (L' denotes summation with the first term halved and L"
summation with the first and last terms halved.) Thus

2 n n+ I

p(cos 0) = -- 2:' 2:" !(r,j) . cos kOj cos kO
n + 1 k=O j=O

1 n+ I n

= --2:" !(r,j) 2:' [cos k(O + OJ) + cos k(O - OJ)]'
n + 1 j=O k=O

where OJ=jn/(n+ 1).j=O..... n+ 1. Hence

where A n(H). the Lebesgue constant of the mapping of! to P. is given by

with

1 n+ I I n Ihn(O)=--2.:" 2:' [cosk(O+O.;)+cosk(O-Oj)]
n + 1 j=O k=O

1 ~:, I sin[(n + D(O+Oj)] sin[(n+D(O-O)] I
2(n+ 1) j=O sinHO+Oj ) + sin HO-Oj )

1 n+1 \ 1 1
---.,..\''' sin(n+ 1)0· (cot 2 (0+Oj)+cot 2 (0-0;»
2(n + 1) }:o

-2cos(n+ 1)0 I

::. Isin(n + 1) 01 ~,~ I 1 1 \':::: 'cot -2 (0 + OJ) + cot -2 (0 - 0) + 1.
2(n + 1) }:l

(3.3)
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It now follows, making use of the bounds derived in McCabe and Phillips
[2 j, that

(3.4)

where A n(1j is the Lebesgue constant for interpolation on the zeros of Tn + I .

Values of An(H) for various n were calculated and are given in Table II. Omax

is the point at which hn is a maximum. Values of A n(T) are also shown and
it is conjectured that in place of (3.4) we have the stronger results,

An(H) < An(T) for n odd and n> 1,

An(H) = An(T) for n even,

Omax = nl2 for n even.

TABLE II

n ()max A,,(H) A,,(T)

I 0 1.5 1.414
2 Oor 471: 1.667 1.667
3 1.104 1.830 1.848
4 471: 1.989 1.989
5 1.284 2.094 2.104
6 471: 2.202 2.202
7 1.362 2.280 2.287
8 -in 2.362 2.362
9 1.407 2.424 2.429

10 }7r 2.489 2.489
50 471: 3.466 3.466

100 17r 3.901 3.901

However, the authors have not been able to find proofs of these conjectures.
It is easily seen from (3.3) and McCabe and Phillips [2, Eqs. (16) and

(20)1 that

when n is even.



264 PHILLIPS AND TAYLOR

REFERENCES

l. W. FRASER, A survey of methods of computing minimax and near-minimax polynomial
approximations for functions of a single independent variable, J. Assoc. Comput. Mach. 12
(1965), 295-314.

2. J. H. MCCABE AND G. M. PHILLIPS, On a certain class of Lebesgue constants, BIT 13
(1973),434-442.

3. G. M. PHILLIPS AND P. J. TAYLOR, "Theory and Applications of Numerical Analysis,"
Academic Press, London, 1973.

4. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.


