Polynomial Approximation Using Equioscillation on the Extreme Points of Chebyshev Polynomials

G. M. PHILLIPS

Mathematical Institute, University of Saint Andrews, Saint Andrews, Scotland

AND

P. J. TAYLOR

Department of Mathematics, University of Stirling, Stirling, Scotland Communicated by Richard S. Varga Received September 3, 1981

IN MEMORY OF PROFESSOR A.S.B. HOLLAND, UNIVERSITY OF CALGARY

One method of obtaining near minimax polynomial approximation to $f \in C^{(n+1)}[-1, 1]$ is to choose $p \in \mathscr{P}_n^s$ such that f-p equioscillates on the point set consisting of the extrema of T_{n+1} . It is shown that ||f-p|| may be expressed in terms of $f^{(n+1)}$ in the same manner as $E_n(f)$, the error of minimax approximation. The Lebesgue constants are also investigated.

1. INTRODUCTION

Suppose $f \in C^{(n+1)}[-1, 1]$. Then it is known that for minimax polynomial approximation on [-1, 1]

$$E_n(f) := \min_{p \in \mathscr{P}_n} \|f - p\| = \frac{1}{2^n (n+1)!} |f^{(n+1)}(\xi)|, \qquad (1.1)$$

where $\xi \in (-1, 1)$ and $\|\cdot\|$ denotes the Chebyshev norm on [-1, 1].

It is also well known that near minimax approximation is given by the interpolating polynomial $q \in \mathscr{P}_n$ constructed on the zeros of T_{n+1} , the Chebyshev polynomial of degree n + 1. We then have

$$Z_{n}(f) := \|f - q\| = \frac{1}{2^{n}(n+1)!} |f^{(n+1)}(\zeta)|, \qquad (1.2)$$
257

0021-9045/82/110257-08\$02.00/0

Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved. where $\zeta \in (-1, 1)$. Details of both of these results may be found, for example, in Phillips and Taylor [3]. It is also possible to find the Lebesgue constant $\Lambda_n(T)$ for such interpolation and deduce that

$$Z_n \leq (1 + \Lambda_n(T)) E_n \leq \left(2 + \frac{2}{\pi} \ln(n+1)\right) E_n.$$

See Rivlin [4].

Another method of obtaining near minimax approximation is to choose the unique $p \in \mathscr{P}_n$ such that the error f-p equioscillates on the point set consisting of the n+2 extrema of T_{n+1} . Such an approximation is usually suggested as a means of starting the Remez exchange algorithm. We will investigate the error f-p and show that a result similar to (1.1) and (1.2) holds.

2. Equioscillation on Extrema of T_{n+1}

Let $\eta_j = \cos(j\pi/(n+1))$, j = 0,..., n+1, denote the extrema of T_{n+1} on [-1, 1]. We note that

$$\prod_{j=0}^{n+1} (x-\eta_j) = \frac{(x^2-1) U_n(x)}{2^n}$$

where $U_n \in \mathscr{P}_n$ is the Chebyshev polynomial of the second kind.

Suppose $q_{n+1} \in \mathscr{P}_{n+1}$ is the interpolatory polynomial for f constructed on $H = \{\eta_0, ..., \eta_{n+1}\}$, when

$$f(x) - q_{n+1}(x) = \frac{(x^2 - 1) U_n(x)}{2^n} f[x, \eta_0, ..., \eta_{n+1}].$$

The coefficient of x^{n+1} in $q_{n+1}(x)$ is $f[\eta_0, ..., \eta_{n+1}]$ and we "economise" q_{n+1} to obtain

$$p(x) = q_{n+1}(x) - \frac{1}{2^n} f[\eta_0, ..., \eta_{n+1}] T_{n+1}(x),$$

where $p \in \mathscr{P}_n$. It is clear that f-p equioscillates on H as $f(\eta_j) - q_{n+1}(\eta_j) = 0, j = 0, ..., n+1$.

We also have

$$f(x) - p(x) = \frac{(x^2 - 1) U_n(x)}{2^n} f[x, \eta_0, ..., \eta_{n+1}] + \frac{T_{n+1}(x)}{2^n} f[\eta_0, ..., \eta_{n+1}]$$
(2.1)

and observe that

$$||f-p|| \ge |f(\eta_j) - p(\eta_j)| = \frac{1}{2^n} |f[\eta_0, ..., \eta_{n+1}]|$$
$$= \frac{1}{2^n (n+1)!} |f^{(n+1)}(\lambda)| \ge \frac{m_{n+1}}{2^n (n+1)!}, \qquad (2.2)$$

where $\lambda \in (-1, 1)$ and

$$m_{n+1} = \min_{x \in [-1,1]} |f^{(n+1)}(x)|.$$

THEOREM. If $f \in C^{(n+1)}[-1, 1]$ and $p \in \mathscr{P}_n$ is such that f - p equioscillates on H then

$$||f-p|| = \frac{1}{2^n(n+1)!} |f^{(n+1)}(\mu)|,$$

where $\mu \in (-1, 1)$ *.*

Proof. We need to prove that

$$\|f - p\| \leqslant \frac{M_{n+1}}{2^n (n+1)!},\tag{2.3}$$

where $M_{n+1} = ||f^{(n+1)}||$. The result then follows from (2.2) and the continuity of $f^{(n+1)}$.

It is not possible to obtain (2.3) by simply bounding the two terms in (2.1) as their signs may differ. We let $x = \cos \theta$, $\theta \in [0, \pi]$, $e(x) = 2^n (f(x) - p(x))$ and write (2.1) as

$$e(x) = -\sin\theta \cdot \sin(n+1)\theta \cdot f[x, \eta_0, ..., \eta_{n+1}] + \cos(n+1)\theta \cdot f[\eta_0, ..., \eta_{n+1}].$$
(2.4)

We consider four separate cases:

(i) $\sin(n+1)\theta$ and $\cos(n+\frac{1}{2})\theta$ of opposite signs. We use

$$f[x, \eta_0, ..., \eta_{n+1}] = \frac{f[x, \eta_0, ..., \eta_n] - f[\eta_0, ..., \eta_{n+1}]}{\cos \theta + 1}$$
(2.5)

to write (2.4) as

$$e(x) = -\frac{\sin\theta \cdot \sin(n+1)\theta}{\cos\theta + 1} f[x, \eta_0, ..., \eta_n] + \left(\cos(n+1)\theta + \frac{\sin\theta \cdot \sin(n+1)\theta}{\cos\theta + 1}\right) f[\eta_0, ..., \eta_{n+1}] = -\tan\frac{1}{2}\theta \cdot \sin(n+1)\theta \cdot f[x, \eta_0, ..., \eta_n] + \frac{\cos(n+\frac{1}{2})\theta}{\cos\frac{1}{2}\theta} f[\eta_0, ..., \eta_{n+1}].$$

The factors $-\tan \frac{1}{2}\theta \cdot \sin(n+1)\theta$ and $\cos(n+\frac{1}{2})\theta/\cos \frac{1}{2}\theta$ are of the same sign and hence

$$|e(x)| \leq |\cos(n+1)\,\theta| \,\frac{M_{n+1}}{(n+1)!} \leq \frac{M_{n+1}}{(n+1)!} \,. \tag{2.6}$$

(ii) $\sin(n+1)\theta$ and $\sin(n+\frac{4}{2})\theta$ of opposite signs. We use

$$f[x, \eta_0, ..., \eta_{n+1}] = \frac{f[x, \eta_1, ..., \eta_{n+1}] - f[\eta_0, ..., \eta_{n+1}]}{\cos \theta - 1}$$
(2.7)

to deduce that

$$e(x) = \cot \frac{1}{2}\theta \cdot \sin(n+1)\theta \cdot f[x, \eta_1, ..., \eta_{n+1}]$$
$$-\frac{\sin(n+\frac{1}{2})\theta}{\sin \frac{1}{2}\theta}f[\eta_0, ..., \eta_{n+1}]$$

when again (2.6) follows.

(iii)
$$\cos(n+1)\theta$$
 and $\cos(n+\frac{1}{2})\theta$ of opposite signs.

We first note that

$$|f[x, \eta_0, ..., \eta_{n+1}]| = \frac{1}{2} |f[x, \eta_1, ..., \eta_{n+1}] - f[x, \eta_0, ..., \eta_n]|$$

$$\leq \frac{M_{n+1}}{(n+1)!}$$
(2.8)

as $\eta_0 = 1$ and $\eta_{n+1} = -1$.

We then use (2.5) in (2.4) to deduce that

$$e(x) = -(\cos n\theta + \cos(n+1)\theta) \cdot f[x, \eta_0, ..., \eta_{n+1}] + \cos(n+1)\theta \cdot f[x, \eta_0, ..., \eta_n] = -2\cos(n+\frac{1}{2})\theta \cdot \cos\frac{1}{2}\theta \cdot f[x, \eta_0, ..., \eta_{n+1}] + \cos(n+1)\theta \cdot f[x, \eta_0, ..., \eta_n].$$

The signs of the factors $-2\cos(n+\frac{1}{2})\theta \cdot \cos\frac{1}{2}\theta$ and $\cos(n+1)\theta$ are the same and hence, using also (2.8),

$$|e(x)| \leq |\cos n\theta| \cdot \frac{M_{n+1}}{(n+1)!} \leq \frac{M_{n+1}}{(n+1)!}.$$
 (2.9)

(iv) $\cos(n+1)\theta$ and $\sin(n+\frac{1}{2})\theta$ of same sign. We use (2.7) in (2.4) to deduce that

$$e(x) = (\cos(n+1)\theta - \cos n\theta) \cdot f[x, \eta_0, ..., \eta_{n+1}] + \cos(n+1)\theta \cdot f[x, \eta_1, ..., \eta_{n+1}] = -2\sin(n+\frac{1}{2}) \cdot \sin\frac{1}{2}\theta \cdot f[x, \eta_0, ..., \eta_{n+1}] + \cos(n+1)\theta \cdot f[x, \eta_1, ..., \eta_{n+1}].$$

This time the relevant factors have opposite signs and (2.9) follows.

Result (2.6) follows immediately from (2.4) for $\theta = 0$ and $\theta = \pi$. For $\theta \in (0, \pi)$, it can be seen from Table I that (i)-(iv) cover all possibilities as $\frac{1}{2}\theta \in (0, \frac{1}{2}\pi)$. Thus the proof of the theorem is complete.

TABLE I

Quadrant which contains		
	$(n+1)\theta$	Relevant case
	1	(iv)
	2	(iii)
	2	(i)
	3	(ii)
	3	(iv)
	4	(iii)
	4	(i)
	1	(ii)

PHILLIPS AND TAYLOR

3. LEBESGUE CONSTANT

Suppose $p \in \mathscr{P}_n$ is as defined in Section 2 and thus f - p equioscillates on H. We may write p in terms of Chebyshev polynomials as follows.

$$p(x) = \sum_{k=0}^{n'} c_k T_k(x), \qquad (3.1)$$

where

$$c_k = \frac{2}{n+1} \sum_{j=0}^{n+1} f(\eta_j) \cdot \cos \frac{kj\pi}{(n+1)}.$$
 (3.2)

See Fraser [1]. (\sum' denotes summation with the first term halved and \sum'' summation with the first and last terms halved.) Thus

$$p(\cos \theta) = \frac{2}{n+1} \sum_{k=0}^{n'} \sum_{j=0}^{n+1} f(\eta_j) \cdot \cos k\theta_j \cos k\theta$$

= $\frac{1}{n+1} \sum_{j=0}^{n+1} f(\eta_j) \sum_{k=0}^{n'} [\cos k(\theta + \theta_j) + \cos k(\theta - \theta_j)],$

where $\theta_{j} = j\pi/(n + 1), j = 0,..., n + 1$. Hence

 $||p|| \leq \Lambda_n(H) \cdot ||f||,$

where $\Lambda_n(H)$, the Lebesgue constant of the mapping of f to p, is given by

$$\Lambda_n(H) = \max_{\theta \in [0,\pi]} h_n(\theta) = \max_{\theta \in [0,\pi/2]} h_n(\theta)$$

with

$$h_{n}(\theta) = \frac{1}{n+1} \sum_{j=0}^{n+1} \left| \sum_{k=0}^{n'} \left| \cos k(\theta + \theta_{j}) + \cos k(\theta - \theta_{j}) \right| \right|$$

$$= \frac{1}{2(n+1)} \sum_{j=0}^{n+1} \left| \frac{\sin[(n+\frac{1}{2})(\theta + \theta_{j})]}{\sin\frac{1}{2}(\theta + \theta_{j})} + \frac{\sin[(n+\frac{1}{2})(\theta - \theta_{j})]}{\sin\frac{1}{2}(\theta - \theta_{j})} \right|$$

$$= \frac{1}{2(n+1)} \sum_{j=0}^{n+1} \left| \sin(n+1)\theta \cdot \left(\cot\frac{1}{2}(\theta + \theta_{j}) + \cot\frac{1}{2}(\theta - \theta_{j}) - 2\cos(n+1)\theta \right| \right|$$

$$\leq \frac{|\sin(n+1)\theta|}{2(n+1)} \sum_{j=1}^{n+1} \left| \cot\frac{1}{2}(\theta + \theta_{j}) + \cot\frac{1}{2}(\theta - \theta_{j}) \right| + 1. \quad (3.3)$$

It now follows, making use of the bounds derived in McCabe and Phillips [2], that

$$\Lambda_n(H) \leqslant \Lambda_n(T) + 1, \tag{3.4}$$

where $\Lambda_n(T)$ is the Lebesgue constant for interpolation on the zeros of T_{n+1} . Values of $\Lambda_n(H)$ for various *n* were calculated and are given in Table II. θ_{\max} is the point at which h_n is a maximum. Values of $\Lambda_n(T)$ are also shown and it is conjectured that in place of (3.4) we have the stronger results,

$\Lambda_n(H) < \Lambda_n(T)$	for n odd and $n > 1$,
$\Lambda_n(H) = \Lambda_n(T)$	for <i>n</i> even,
$\theta_{\rm max} = \pi/2$	for <i>n</i> even.

n	θ_{\max}	$\Lambda_n(H)$	$A_n(T)$
1	0	1.5	1.414
2	0 or $\frac{1}{2}\pi$	1.667	1.667
3	1.104	1.830	1.848
4	$\frac{1}{2}\pi$	1.989	1.989
5	1.284	2.094	2.104
6	$\frac{1}{2}\pi$	2.202	2.202
7	1.362	2.280	2.287
8	$\frac{1}{2}\pi$	2.362	2.362
9	1.407	2.424	2.429
10	$\frac{1}{2}\pi$	2.489	2.489
50	$\frac{1}{2}\pi$	3.466	3.466
100	$\frac{1}{2}\pi$	3.901	3.901

TABLE II

However, the authors have not been able to find proofs of these conjectures. It is easily seen from (3.3) and McCabe and Phillips [2, Eqs. (16) and (20)] that

$$h_n(\pi/2) = \Lambda_n(T)$$

when n is even.

PHILLIPS AND TAYLOR

References

- 1. W. FRASER, A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable, J. Assoc. Comput. Mach. 12 (1965), 295-314.
- 2. J. H. MCCABE AND G. M. PHILLIPS, On a certain class of Lebesgue constants, *BIT* 13 (1973), 434-442.
- 3. G. M. PHILLIPS AND P. J. TAYLOR, "Theory and Applications of Numerical Analysis," Academic Press, London, 1973.
- 4. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.